Prove that if a group contains exactly one element of order 2, then that element is in the center of the group.

Consider the element $z =y^{-1}xy$, we have: $z^2 = (y^{-1}xy)^2 = (y^{-1}xy)(y^{-1}xy) = e$. So: $z = x$, and $y^{-1}xy = x$. So: $xy = yx$. So: $x$ is in the center of $G$.


More generally, if a group$~G$ contains exactly one element$~x$ having any given property that can be expressed in the language of group theory (in particular without mentioning any specific element of$~G$, other than the identity element$~e$), then $x$ is in the center of$~G$. Namely, any automorphism of$~G$ must send $x$ to an element with the same property, which means it has to fix$~x$. In particular this is the case for inner automorphisms (conjugation by some element of$~G$), and this implies that $x$ is in the centre of$~G$.


Every element of a conjugacy class has the same order. Since there is only one element of order 2 that element forms a singleton conjugacy class. An element has a singleton conjugacy class iff it is in the center.

These are basic observations once you get to the class equation.