Prove that matrix equation $AX-XA=I$ doesn't have a solution for any $A\in M_n(\mathbb{R})$
Note that $X\in\mathcal{M}_n(\mathbb{R}),$ else doing operations like $AX-XA$ have no sense. Use the trace and note that $$\mathrm{Tr}(AX-XA)=\mathrm{Tr}(AX)-\mathrm{Tr}(XA)=\mathrm{Tr}(AX)-\mathrm{Tr}(AX)=0$$ whereas $$\mathrm{Tr}(I)\geq 2.$$