Prove that $\sum_{n=1}^\infty \mu(n) \log n/n =1$.
There is a nice, short elementary solution
By the identity $$\left(\frac{1}{\zeta(s)}\right)^{'}=-\frac{\zeta^{'}(s)}{\zeta(s)}\frac{1}{\zeta(s)},$$ we have that
$$-\sum_{n\leq x}\frac{\mu(n)\log n}{n}=\sum_{n\leq x}\frac{1}{n}\sum_{d|n}\mu(d)\Lambda\left(\frac{n}{d}\right).$$ This sum equals $$\sum_{dk\leq x}\frac{\mu(d)\Lambda\left(k\right)}{dk} =\sum_{dk\leq x}\frac{\mu(d)\left(\Lambda\left(k\right)-1\right)}{dk} +\sum_{dk\leq x}\frac{\mu(d)}{dk}.$$ The right most sum is easily seen to equal $1$, as $$\sum_{dk\leq x}\frac{\mu(d)}{dk}=\sum_{n\leq x}\frac{1}{n}\sum_{d|n} \mu(d)=1,$$ so we need only show that the other term is $o(1)$. By the hyperbola method $$\sum_{dk\leq x}\frac{\mu(d)\left(\Lambda\left(k\right)-1\right)}{dk}=\sum_{d\leq\sqrt{x}}\frac{\mu(d)}{d}\sum_{k\leq\frac{x}{d}}\frac{\left(\Lambda\left(k\right)-1\right)}{k}+\sum_{k\leq\sqrt{x}}\frac{\left(\Lambda\left(k\right)-1\right)}{k}\sum_{\sqrt{x}<d\leq\frac{x}{k}}\frac{\mu(d)}{d}.$$ Since $$\sum_{k\leq y}\frac{\left(\Lambda\left(k\right)-1\right)}{k}=o\left(\frac{1}{\log y}\right)\text{ and }\sum_{d\leq y}\frac{\mu(d)}{d}=o\left(\frac{1}{\log y}\right)$$ by the prime number theorem, the above is $$\ll o\left(\frac{1}{\log x}\right)\left(\sum_{d\leq\sqrt{x}}\frac{1}{d}\right)\ll o\left(1\right),$$ and so we see that $$-\sum_{n\leq x}\frac{\mu(n)\log n}{n}=1+o(1).$$
One approach is to use Perron's formula. In this case, we have that for $x\notin \mathbb{N}$
$$\sum_{n\leq x}\frac{\mu(n)}{n}\log n=\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}\frac{-\zeta^{'}(s+1)}{\zeta(s+1)^{2}}\frac{x^{s}}{s}ds.$$
The residue of $\frac{-\zeta^{'}(s+1)}{\zeta(s+1)^{2}}\frac{x^{s}}{s}$ at $s=0$ is $1$, which leads to our expected answer. (I am skipping the majority of the work which is bounding the integrand over the other contours, and moving things into the zero free region.)