Prove that $x^2 + xy + y^2 \ge 0$ by contradiction

Suppose that $x^2+xy+y^2<0$; then $x^2+2xy+y^2<xy$, so $(x+y)^2<xy$. Subtracting $3xy$ from both sides of the original inequality, we see that $x^2-2xy+y^2<-3xy$, so $(x-y)^2<-3xy$. Squares are non-negative, so on the one hand $xy>0$, and on the other hand $-3xy>0$ and therefore $xy<0$.


By completing square,

$$x^2+xy+y^2 = x^2+2x\frac{y}{2}+\frac{y^2}{4} + \frac{3y^2}{4} = \left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\ge 0$$


Assume $x^2+xy+y^2<0$. Adding and subtracting $xy$ on the left-hand side gives $x^2+2xy+y^2-xy=(x+y)^2-xy<0$, and therefore $0\leq(x+y)^2<xy$. Conversely, $x^2+xy+y^2<0$ implies $xy<-(x^2+y^2)\leq0$. Combining these, we have $$xy<0<xy,$$ a clear contradiction.