Prove $ x^n-1=(x-1)(x^{n-1}+x^{n-2}+...+x+1)$
To conclude your induction proof, just multiply x both sides :
$x^n-1=(x-1)(x^{n-1}+x^{n-2}+...+x+1) $
multiply $x$ both sides :
$\begin{align} \\ x^{n+1}-x &=(x-1)(x^n+x^{n-1}+x^{n-2}+...+x^2+x) \\ x^{n+1}-1 -(x-1) &=(x-1)(x^n+x^{n-1}+x^{n-2}+...+x^2+x) \\ x^{n+1}-1 &=(x-1)(x^n+x^{n-1}+x^{n-2}+...+x^2+x)+(x-1) \\ \end{align}$
factor $(x-1)$ and you're done !