Proving $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
You must first prove 2 cases:
(1) $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$
(2) $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$
Note that in mathematics we use the following symbols:
$\cap=$ AND = $\land$
$\cup=$ OR = $\lor$
Case 1: $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$
Let $x \in A \cap (B \cup C) \implies x \in A \land x \in (B \cup C)$
$\implies x \in A \land \{ x \in B \lor x \in C \}$
$\implies \{ x \in A \land x \in B \} \lor\{ x \in A \land x \in C \} $
$\implies x \in (A \cap B) \lor x \in (A \cap C)$
$\implies x \in (A \cap B) \cup (A \cap C)$
$\therefore x \in A \cap (B \cup C) \implies x \in (A \cap B) \cup (A \cap C)$
$\therefore A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$
Case 2: $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$
Let $x \in (A \cap B) \cup (A \cap C) \implies x \in (A \cap B) \lor x \in (A \cap C)$
$\implies \{x \in A \land x \in B \} \lor \{ x \in A \land x \in C \}$
$\implies x \in A \land \{ x \in B \lor x \in C\}$
$\implies x \in A \land \{B \cup C \}$
$\implies x \in A \cap (B \cup C)$
$\therefore x \in (A \cap B) \cup (A \cap C) \implies x \in A \cap (B \cup C)$
$\therefore (A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$
$\therefore A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$