Proving that $\sqrt{a_1^2} +\cdots+ \sqrt{a_n^2} > \sqrt{a_1^2 +\cdots+a_n^2}$ using Pythagoras

Here is a geometrical proof. Consider a square with side length $L = |a_1|+|a_2| + \ldots + |a_n|$.

$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$enter image description here

Comparing the area of the whole square to the area of the small squares contained within it we see that

$$(|a_1| + |a_2| + \ldots + |a_n|)^2 \geq a_1^2 + a_2^2 + \ldots + a_n^2$$

and by taking the square root we get the desired inequality. Equality can only happen when one of the small squares covers the whole square which can only happen when atleast $n-1$ of the $a_i$'s are zero.


Both sides of the inequality are non-negative (for all $a_i\in\mathbb R$), therefore the following equivalences hold:

$$\sqrt{a_1^2} + \sqrt{a_2^2} +\cdots + \sqrt{a_n^2} \ge \sqrt{a_1^2 + a_2^2 +…+a_n^2}$$

$$\iff \left(\sqrt{a_1^2} + \sqrt{a_2^2} +\cdots + \sqrt{a_n^2}\right)^2 \ge \left(\sqrt{a_1^2 + a_2^2 +…+a_n^2}\right)^2$$

$$\iff a_1^2+a_2^2+\cdots+a_n^2+2\sum_{i=1}^n \sum_{j>i}^n|a_ia_j|\ge a_1^2+a_2^2+\cdots+a_n^2$$

$$\iff 2\sum_{i=1}^n \sum_{j>i}^n|a_ia_j|\ge 0,$$

which is true, with equality if and only if at least $n-1$ of $a_1,a_2,\ldots,a_n$ are equal to $0$.


It's very easy using induction :

You proved the case when $n=2$ .

Now assume you know it for $n$ and want prove it for $n+1$ :

$$\sqrt{a_1^2}+\ldots+\sqrt{a_n^2}+\sqrt{a_{n+1}^2} >\sqrt{a_1^2+a_2^2+\ldots+a_n^2}+\sqrt{a_{n+1}^2}$$

Now use also the $n=2$ case to finnish it :

$$\sqrt{a_1^2+a_2^2+\ldots+a_n^2}+\sqrt{a_{n+1}^2}>\sqrt{\left ( \sqrt{a_1^2+a_2^2+\ldots+a_n^2} \right )^2}+\sqrt{a_{n+1}^2}>\sqrt{\left ( \sqrt{a_1^2+a_2^2+\ldots+a_n^2} \right )^2+a_{n+1}^2}=\sqrt{a_1^2+a_2^2+\ldots+a_n^2+a_{n+1}^2}$$ as wanted .

You can translate this into a geometric proof : consider an $n$-dimensional box with the sides $a_1,a_2,\ldots,a_n$ . The diagonal of the box is $\sqrt{a_1^2+a_2^2+\ldots+a_n^2}$ and now you can repeatedly apply the triangle's inequality to get your inequality (this is equivalent with the induction proof above )