PySpark - Adding a Column from a list of values using a UDF
Hope this helps!
from pyspark.sql.functions import monotonically_increasing_id, row_number
from pyspark.sql import Window
#sample data
a= sqlContext.createDataFrame([("Dog", "Cat"), ("Cat", "Dog"), ("Mouse", "Cat")],
["Animal", "Enemy"])
a.show()
#convert list to a dataframe
rating = [5,4,1]
b = sqlContext.createDataFrame([(l,) for l in rating], ['Rating'])
#add 'sequential' index and join both dataframe to get the final result
a = a.withColumn("row_idx", row_number().over(Window.orderBy(monotonically_increasing_id())))
b = b.withColumn("row_idx", row_number().over(Window.orderBy(monotonically_increasing_id())))
final_df = a.join(b, a.row_idx == b.row_idx).\
drop("row_idx")
final_df.show()
Input:
+------+-----+
|Animal|Enemy|
+------+-----+
| Dog| Cat|
| Cat| Dog|
| Mouse| Cat|
+------+-----+
Output is:
+------+-----+------+
|Animal|Enemy|Rating|
+------+-----+------+
| Cat| Dog| 4|
| Dog| Cat| 5|
| Mouse| Cat| 1|
+------+-----+------+
As mentioned by @Tw UxTLi51Nus, if you can order the DataFrame, let's say, by Animal, without this changing your results, you can then do the following:
def add_labels(indx):
return rating[indx-1] # since row num begins from 1
labels_udf = udf(add_labels, IntegerType())
a = spark.createDataFrame([("Dog", "Cat"), ("Cat", "Dog"), ("Mouse", "Cat")],["Animal", "Enemy"])
a.createOrReplaceTempView('a')
a = spark.sql('select row_number() over (order by "Animal") as num, * from a')
a.show()
+---+------+-----+
|num|Animal|Enemy|
+---+------+-----+
| 1| Dog| Cat|
| 2| Cat| Dog|
| 3| Mouse| Cat|
+---+------+-----+
new_df = a.withColumn('Rating', labels_udf('num'))
new_df.show()
+---+------+-----+------+
|num|Animal|Enemy|Rating|
+---+------+-----+------+
| 1| Dog| Cat| 5|
| 2| Cat| Dog| 4|
| 3| Mouse| Cat| 1|
+---+------+-----+------+
And then drop the num
column:
new_df.drop('num').show()
+------+-----+------+
|Animal|Enemy|Rating|
+------+-----+------+
| Dog| Cat| 5|
| Cat| Dog| 4|
| Mouse| Cat| 1|
+------+-----+------+
Edit:
Another - but perhaps ugly and a bit inefficient - way, if you cannot sort by a column, is to go back to rdd and do the following:
a = spark.createDataFrame([("Dog", "Cat"), ("Cat", "Dog"), ("Mouse", "Cat")],["Animal", "Enemy"])
# or create the rdd from the start:
# a = spark.sparkContext.parallelize([("Dog", "Cat"), ("Cat", "Dog"), ("Mouse", "Cat")])
a = a.rdd.zipWithIndex()
a = a.toDF()
a.show()
+-----------+---+
| _1| _2|
+-----------+---+
| [Dog,Cat]| 0|
| [Cat,Dog]| 1|
|[Mouse,Cat]| 2|
+-----------+---+
a = a.select(bb._1.getItem('Animal').alias('Animal'), bb._1.getItem('Enemy').alias('Enemy'), bb._2.alias('num'))
def add_labels(indx):
return rating[indx] # indx here will start from zero
labels_udf = udf(add_labels, IntegerType())
new_df = a.withColumn('Rating', labels_udf('num'))
new_df.show()
+---------+--------+---+------+
|Animal | Enemy|num|Rating|
+---------+--------+---+------+
| Dog| Cat| 0| 5|
| Cat| Dog| 1| 4|
| Mouse| Cat| 2| 1|
+---------+--------+---+------+
(I would not recommend this if you have much data)
Hope this helps, good luck!
I might be wrong, but I believe the accepted answer will not work. monotonically_increasing_id
only guarantees that the ids will be unique and increasing, not that they will be consecutive. Hence using it on two different dataframes will likely create two very different columns, and the join will mostly return empty.
taking inspiration from this answer https://stackoverflow.com/a/48211877/7225303 to a similar question, we could change the incorrect answer to:
from pyspark.sql.window import Window as W
from pyspark.sql import functions as F
a= sqlContext.createDataFrame([("Dog", "Cat"), ("Cat", "Dog"), ("Mouse", "Cat")],
["Animal", "Enemy"])
a.show()
+------+-----+
|Animal|Enemy|
+------+-----+
| Dog| Cat|
| Cat| Dog|
| Mouse| Cat|
+------+-----+
#convert list to a dataframe
rating = [5,4,1]
b = sqlContext.createDataFrame([(l,) for l in rating], ['Rating'])
b.show()
+------+
|Rating|
+------+
| 5|
| 4|
| 1|
+------+
a = a.withColumn("idx", F.monotonically_increasing_id())
b = b.withColumn("idx", F.monotonically_increasing_id())
windowSpec = W.orderBy("idx")
a = a.withColumn("idx", F.row_number().over(windowSpec))
b = b.withColumn("idx", F.row_number().over(windowSpec))
a.show()
+------+-----+---+
|Animal|Enemy|idx|
+------+-----+---+
| Dog| Cat| 1|
| Cat| Dog| 2|
| Mouse| Cat| 3|
+------+-----+---+
b.show()
+------+---+
|Rating|idx|
+------+---+
| 5| 1|
| 4| 2|
| 1| 3|
+------+---+
final_df = a.join(b, a.idx == b.idx).drop("idx")
+------+-----+------+
|Animal|Enemy|Rating|
+------+-----+------+
| Dog| Cat| 5|
| Cat| Dog| 4|
| Mouse| Cat| 1|
+------+-----+------+