Pyspark replace NaN with NULL

I finally found the answer after Googling around a bit.

df = spark.createDataFrame([(1, float('nan')), (None, 1.0)], ("a", "b"))
df.show()

+----+---+
|   a|  b|
+----+---+
|   1|NaN|
|null|1.0|
+----+---+

import pyspark.sql.functions as F
columns = df.columns
for column in columns:
    df = df.withColumn(column,F.when(F.isnan(F.col(column)),None).otherwise(F.col(column)))

sqlContext.registerDataFrameAsTable(df, "df2")
sql('select * from df2').show()

+----+----+
|   a|   b|
+----+----+
|   1|null|
|null| 1.0|
+----+----+

It doesn't use na.fill(), but it accomplished the same result, so I'm happy.


df = spark.createDataFrame([(1, float('nan')), (None, 1.0)], ("a", "b"))
df.show()

+----+---+        
|   a|  b|
+----+---+
|   1|NaN|
|null|1.0|
+----+---+

df = df.replace(float('nan'), None)
df.show()

+----+----+
|   a|   b|
+----+----+
|   1|null|
|null| 1.0|
+----+----+

You can use the .replace function to change to null values in one line of code.