categorical encoder sklearn code example

Example 1: label encoding

from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()
companydata.ShelveLoc = le.fit_transform(companydata.ShelveLoc)

Example 2: categorical encoder

import category_encoders as ce

encoder = ce.BackwardDifferenceEncoder(cols=[...])
encoder = ce.BaseNEncoder(cols=[...])
encoder = ce.BinaryEncoder(cols=[...])
encoder = ce.CatBoostEncoder(cols=[...])
encoder = ce.CountEncoder(cols=[...])
encoder = ce.GLMMEncoder(cols=[...])
encoder = ce.HashingEncoder(cols=[...])
encoder = ce.HelmertEncoder(cols=[...])
encoder = ce.JamesSteinEncoder(cols=[...])
encoder = ce.LeaveOneOutEncoder(cols=[...])
encoder = ce.MEstimateEncoder(cols=[...])
encoder = ce.OneHotEncoder(cols=[...])
encoder = ce.OrdinalEncoder(cols=[...])
encoder = ce.SumEncoder(cols=[...])
encoder = ce.PolynomialEncoder(cols=[...])
encoder = ce.TargetEncoder(cols=[...])
encoder = ce.WOEEncoder(cols=[...])

encoder.fit(X, y)
X_cleaned = encoder.transform(X_dirty)