change float column to int pandas code example

Example 1: convert float to integer pandas

>>> df['C'] = df['C'].apply(np.int64)
>>> print(df)
...    A  B  C         D
... 0  8  0  1  6.226750
... 1  1  9  9  8.522808
... 2  1  4  2  7.739108

Example 2: convert float to integer pandas

>>> df
          A         B     C         D
0  0.475103  0.355453  0.66  0.869336
1  0.260395  0.200287   NaN  0.617024
2  0.517692  0.735613  0.18  0.657106
>>> df[list("ABCD")] = df[list("ABCD")].fillna(0.0).astype(int)
>>> df
   A  B  C  D
0  0  0  0  0
1  0  0  0  0
2  0  0  0  0

Example 3: convert all columns to float pandas

You have four main options for converting types in pandas:

to_numeric() - provides functionality to safely convert non-numeric types (e.g. strings) to a suitable numeric type. (See also to_datetime() and to_timedelta().)

astype() - convert (almost) any type to (almost) any other type (even if it's not necessarily sensible to do so). Also allows you to convert to categorial types (very useful).

infer_objects() - a utility method to convert object columns holding Python objects to a pandas type if possible.

convert_dtypes() - convert DataFrame columns to the "best possible" dtype that supports pd.NA (pandas' object to indicate a missing value).

Read on for more detailed explanations and usage of each of these methods.