compare one column with other columns using pandas python code example
Example 1: pandas compare two columns
import numpy as np
import pandas as pd
a = [['10', '1.2', '4.2'], ['15', '70', '0.03'], ['8', '5', '0']]
df = pd.DataFrame(a, columns=['one', 'two', 'three'])
df['que'] = np.where((df['one'] >= df['two']) & (df['one'] <= df['three'])
, df['one'], np.nan)
conditions = [
(df['one'] >= df['two']) & (df['one'] <= df['three']),
df['one'] < df['two']]
choices = [df['one'], df['two']]
df['que'] = np.select(conditions, choices, default=np.nan)
conditions = [
df['one'] < df['two'],
df['one'] <= df['three']]
choices = [df['two'], df['one']]
a = [['10', '1.2', '4.2'], ['15', '70', '0.03'], ['8', '5', '0']]
df = pd.DataFrame(a, columns=['one', 'two', 'three'])
df2 = df.astype(float)
Example 2: pandas compare two columns of different dataframe
df1['priceDiff?'] = np.where(df1['Price1'] == df2['Price2'], 0, df1['Price1'] - df2['Price2'])
Example 3: pandas compare two columns of different dataframe
df3 = [(df2.type.isin(df1.type)) & (df1.value.between(df2.low,df2.high,inclusive=True))]
df1.join(df3)
Example 4: pandas compare two columns of different dataframe
df1['enh2'] = pd.Series((df2.type.isin(df1.type)) & (df1.value != df2.low) | (df1.value + 1 == df2.high))