conditions to specify column values to another value in pandas daaframe code example
Example 1: compute value based on condition of existing column dataframe
conditions = [
(df['likes_count'] <= 2),
(df['likes_count'] > 2) & (df['likes_count'] <= 9),
(df['likes_count'] > 9) & (df['likes_count'] <= 15),
(df['likes_count'] > 15)
]
values = ['tier_4', 'tier_3', 'tier_2', 'tier_1']
df['tier'] = np.select(conditions, values)
df.head()
Example 2: change pandas column value based on condition
In [41]:
df.loc[df['First Season'] > 1990, 'First Season'] = 1
df
Out[41]:
Team First Season Total Games
0 Dallas Cowboys 1960 894
1 Chicago Bears 1920 1357
2 Green Bay Packers 1921 1339
3 Miami Dolphins 1966 792
4 Baltimore Ravens 1 326
5 San Franciso 49ers 1950 1003