confusion matrix pytorch code example
Example 1: confusion matrix python
By definition, entry i,j in a confusion matrix is the number of
observations actually in group i, but predicted to be in group j.
Scikit-Learn provides a confusion_matrix function:
from sklearn.metrics import confusion_matrix
y_actu = [2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 2]
y_pred = [0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 2]
confusion_matrix(y_actu, y_pred)
Example 2: confusion matrix python
df_confusion = pd.crosstab(y_actu, y_pred, rownames=['Actual'], colnames=['Predicted'], margins=True)