Continuous genetic algorithm Python code example
Example: genetic algorithm python
from random import randint
from random import random
def newChar():
r = randint(63,122)
if r == 64:
r = ord(' ')
if r == 63:
r = ord('.')
return chr(r)
def mapit(i,m,M, a = 0, b = 1):
return (b - a)*(i - m)/(M-m)
class DNA:
def __init__(self, num):
self.num = num
self.genes = [newChar() for i in range(num)]
self.fitnes = 0
def getPhrase(self):
s = ''
return s.join(self.genes)
def calcFitness(self, target):
scor = 0
for idx, gen in enumerate(self.genes):
if gen == target[idx]:
scor += 1
self.score = scor/len(target)
return scor/len(target)
def Reproduction(self, partner):
child = DNA(self.num)
midpoint = randint(0, len(self.genes))
for i in range(self.num):
if i < midpoint:
child.genes[i] = self.genes[i]
else:
child.genes[i] = partner.genes[i]
return child
def mutate(self, mutRate):
for i in range(self.num):
r = random()
if r < mutRate:
self.genes[i] = newChar()
class Papulation:
def __init__(self, target, pmax, mutationRate, max_mat_pool = 1e5):
self.target = target
self.pmax = pmax
self.mutationRate = mutationRate
self.papulation = []
for i in range(pmax):
self.papulation.append(DNA(len(target)))
self.matinPool = []
self.bestfit = None
self.max_mat_pool = max_mat_pool
def calcFitness(self):
for i in self.papulation:
i.calcFitness(self.target)
def naturalSelaction(self):
maxfit = 0
for i in self.papulation:
if i.score > maxfit:
maxfit = i.score
self.bestfit = i
for i in self.papulation:
n = int(mapit(i.score, 0, maxfit)*100)
for j in range(n):
self.matinPool.append(i)
def died(self):
diff = int(len(self.matinPool) - self.max_mat_pool)
if diff > 0:
del self.matinPool[0:diff]
def newGenration(self):
for i in range(self.pmax):
partnarA = self.matinPool[randint(0,len(self.matinPool) -1)]
partnarB = self.matinPool[randint(0,len(self.matinPool) - 1)]
child = partnarA.Reproduction(partnarB)
child.mutate(self.mutationRate)
self.papulation[i] = child
target = '''Hello world'''
pmax = 1000
mutationRate = 0.01
genrations = 100
k = 0
p = Papulation(target,pmax, mutationRate)
for i in range(genrations):
p.calcFitness()
p.naturalSelaction()
p.newGenration()
if p.bestfit.getPhrase() == target:
k+=1
print('gin: ', i, p.bestfit.getPhrase())
p.died()