conv2d pytorch code example

Example 1: torch cnn

train_loader = DataLoader(train_data, batch_size=10,shuffle=True)
test_loader = DataLoader(test_data, batch_size=10, shuffle=False)
class ConvolutionalNetwork(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1,6,3,1)
        self.conv2 = nn.Conv2d(6,16, 3, 1)
        self.fc1 = nn.Linear(5*5*16, 100)
        self.fc2 = nn.Linear(100, 10)

    def forward(self, X):
        X = F.relu(self.conv1(X))
        X = F.max_pool2d(X, 2, 2)
        X = F.relu(self.conv2(X))
        X = F.max_pool2d(X, 2, 2)
        X = X.view(-1, 5*5*16)
        X = F.relu(self.fc1(X))
        X = self.fc2(X)
        return F.log_softmax(X,dim=1)
    
torch.manual_seed(101)
model = ConvolutionalNetwork()

Example 2: conv2 python

import numpy as np
from scipy.ndimage.filters import convolve

def conv2(x,y,mode='same'):
    """
    Emulate the function conv2 from Mathworks.

    Usage:

    z = conv2(x,y,mode='same')

    TODO: 
     - Support other modes than 'same' (see conv2.m)
    """

    if not(mode == 'same'):
        raise Exception("Mode not supported")

    # Add singleton dimensions
    if (len(x.shape) < len(y.shape)):
        dim = x.shape
        for i in range(len(x.shape),len(y.shape)):
            dim = (1,) + dim
        x = x.reshape(dim)
    elif (len(y.shape) < len(x.shape)):
        dim = y.shape
        for i in range(len(y.shape),len(x.shape)):
            dim = (1,) + dim
        y = y.reshape(dim)

    origin = ()

    # Apparently, the origin must be set in a special way to reproduce
    # the results of scipy.signal.convolve and Matlab
    for i in range(len(x.shape)):
        if ( (x.shape[i] - y.shape[i]) % 2 == 0 and
             x.shape[i] > 1 and
             y.shape[i] > 1):
            origin = origin + (-1,)
        else:
            origin = origin + (0,)

    z = convolve(x,y, mode='constant', origin=origin)

    return z

Example 3: torch.nn.Linear(in_features, out_features, bias=True) discription

import torch
import torch.nn as nn

x = torch.tensor([[1.0, -1.0],
                  [0.0,  1.0],
                  [0.0,  0.0]])

in_features = x.shape[1]  # = 2
out_features = 2

m = nn.Linear(in_features, out_features)
%%%%
results would be 
>>> m.weight
tensor([[-0.4500,  0.5856],
        [-0.1807, -0.4963]])

>>> m.bias
tensor([ 0.2223, -0.6114])
%%%%