convert object columns to float pandas code example

Example 1: convert column to numeric pandas

# convert all columns of DataFrame
df = df.apply(pd.to_numeric) # convert all columns of DataFrame

# convert just columns "a" and "b"
df[["a", "b"]] = df[["a", "b"]].apply(pd.to_numeric)

Example 2: convert all columns to float pandas

You have four main options for converting types in pandas:

to_numeric() - provides functionality to safely convert non-numeric types (e.g. strings) to a suitable numeric type. (See also to_datetime() and to_timedelta().)

astype() - convert (almost) any type to (almost) any other type (even if it's not necessarily sensible to do so). Also allows you to convert to categorial types (very useful).

infer_objects() - a utility method to convert object columns holding Python objects to a pandas type if possible.

convert_dtypes() - convert DataFrame columns to the "best possible" dtype that supports pd.NA (pandas' object to indicate a missing value).

Read on for more detailed explanations and usage of each of these methods.