drop rows with nan in specific column pandas code example
Example 1: drop if nan in column pandas
df = df[df['EPS'].notna()]
Example 2: remove rows or columns with NaN value
df.dropna()
df.dropna(how='all')
Example 3: dropping nan in pandas dataframe
df.dropna(subset=['name', 'born'])
Example 4: pandas drop row with nan
import pandas as pd
df = pd.DataFrame({'values_1': ['700','ABC','500','XYZ','1200'],
'values_2': ['DDD','150','350','400','5000']
})
df = df.apply (pd.to_numeric, errors='coerce')
df = df.dropna()
df = df.reset_index(drop=True)
print (df)
Example 5: drop columns with nan pandas
>>> df.dropna(axis='columns')
name
0 Alfred
1 Batman
2 Catwoman
Example 6: pandas dropna
df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'],
... "toy": [np.nan, 'Batmobile', 'Bullwhip'],
... "born": [pd.NaT, pd.Timestamp("1940-04-25"),
... pd.NaT]})
>>> df
name toy born
0 Alfred NaN NaT
1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT
>>> df.dropna()
name toy born
1 Batman Batmobile 1940-04-25