Python: Extract dimension data from dataframe string column and create columns with values for each of them

Option 1: I prefer splitting several time:

new_series = (df.set_index('ID')
                .all_dimensions
                .str.split(',', expand=True)
                .stack()
                .reset_index(level=-1, drop=True)
             )

# split second time for individual measurement
new_df = (new_series.str
                    .split(':', expand=True)
                    .reset_index()
                    )

# stripping off leading/trailing spaces
new_df[0] = new_df[0].str.strip()
new_df[1] = new_df[1].str.strip()

# unstack to get the desire table:
new_df.set_index(['ID', 0])[1].unstack()

Option 2: Use split(',|:') as what you tried:

# splitting
new_series = (df.set_index('ID')
                .all_dimensions
                .str.split(',|:', expand=True)
                .stack()
                .reset_index(level=-1, drop=True)
             )

# concat along axis=1 to get dataframe with two columns 
# new_df.columns = ('ID', 0, 1) where 0 is measurement name
new_df = (pd.concat((new_series[::2].str.strip(), 
                     new_series[1::2]), axis=1)
            .reset_index())

new_df.set_index(['ID', 0])[1].unstack()

Output:

    Depth   Diameter    Height  Length  Volume  Weight
ID                      
12  NaN     NaN     2 cm    NaN     4cl     100g
34  NaN     NaN     5 cm    10cm    NaN     NaN
56  80cm    NaN     NaN     NaN     NaN     NaN
78  NaN     NaN     NaN     7 cm    NaN     2 kg
90  NaN     4 cm    NaN     NaN     50 cl   NaN

This is a hard question , your string need to be split and your each items after split need to be convert to dict , then we can using DataFrame constructor rebuild those columns

d=[ [{y.split(':')[0]:y.split(':')[1]}for y in x.split(',')]for x in df.all_dimensions]
from collections import ChainMap
data = list(map(lambda x : dict(ChainMap(*x)),d))
s=pd.DataFrame(data)
df=pd.concat([df,s.groupby(s.columns.str.strip(),axis=1).first()],1)
df
Out[26]: 
   ID                       all_dimensions  Depth  ... Length  Volume Weight
0  12  Height:2 cm,Volume: 4cl,Weight:100g    NaN  ...    NaN     4cl   100g
1  34           Length: 10cm, Height: 5 cm    NaN  ...   10cm     NaN    NaN
2  56                          Depth: 80cm   80cm  ...    NaN     NaN    NaN
3  78           Weight: 2 kg, Length: 7 cm    NaN  ...   7 cm     NaN   2 kg
4  90        Diameter: 4 cm, Volume: 50 cl    NaN  ...    NaN   50 cl    NaN
[5 rows x 8 columns]

Check the columns

df['Height']
Out[28]: 
0     2 cm
1     5 cm
2      NaN
3      NaN
4      NaN
Name: Height, dtype: object