Example 1: face_recognition python project
import cv2
import face_recognition
imgElon = face_recognition.load_image_file('ImagesBasic/Elon Musk.jpg')
imgElon = cv2.cvtColor(imgElon,cv2.COLOR_BGR2RGB)
imgTest = face_recognition.load_image_file('ImagesBasic/Bill gates.jpg')
imgTest = cv2.cvtColor(imgTest,cv2.COLOR_BGR2RGB)
faceLoc = face_recognition.face_locations(imgElon)[0]
encodeElon = face_recognition.face_encodings(imgElon)[0]
cv2.rectangle(imgElon,(faceLoc[3],faceLoc[0]),(faceLoc[1],faceLoc[2]),(255,0,255),2)
faceLocTest = face_recognition.face_locations(imgTest)[0]
encodeTest = face_recognition.face_encodings(imgTest)[0]
cv2.rectangle(imgTest,(faceLocTest[3],faceLocTest[0]),(faceLocTest[1],faceLocTest[2]),(255,0,255),2)
results = face_recognition.compare_faces([encodeElon],encodeTest)
faceDis = face_recognition.face_distance([encodeElon],encodeTest)
print(results,faceDis)
cv2.putText(imgTest,f'{results} {round(faceDis[0],2)}',(50,50),cv2.FONT_HERSHEY_COMPLEX,1,(0,0,255),2)
cv2.imshow('Elon Musk',imgElon)
cv2.imshow('Elon Test',imgTest)
cv2.waitKey(0)
Example 2: facerecognizer python
import face_recognition
import os
import cv2
KNOWN_FACES_DIR = 'known_faces'
UNKNOWN_FACES_DIR = 'unknown_faces'
TOLERANCE = 0.6
FRAME_THICKNESS = 3
FONT_THICKNESS = 2
MODEL = 'cnn'
def name_to_color(name):
color = [(ord(c.lower())-97)*8 for c in name[:3]]
return color
print('Loading known faces...')
known_faces = []
known_names = []
for name in os.listdir(KNOWN_FACES_DIR):
for filename in os.listdir(f'{KNOWN_FACES_DIR}/{name}'):
image = face_recognition.load_image_file(f'{KNOWN_FACES_DIR}/{name}/{filename}')
encoding = face_recognition.face_encodings(image)[0]
known_faces.append(encoding)
known_names.append(name)
print('Processing unknown faces...')
for filename in os.listdir(UNKNOWN_FACES_DIR):
print(f'Filename {filename}', end='')
image = face_recognition.load_image_file(f'{UNKNOWN_FACES_DIR}/{filename}')
locations = face_recognition.face_locations(image, model=MODEL)
encodings = face_recognition.face_encodings(image, locations)
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
print(f', found {len(encodings)} face(s)')
for face_encoding, face_location in zip(encodings, locations):
results = face_recognition.compare_faces(known_faces, face_encoding, TOLERANCE)
match = None
if True in results:
match = known_names[results.index(True)]
print(f' - {match} from {results}')
top_left = (face_location[3], face_location[0])
bottom_right = (face_location[1], face_location[2])
color = name_to_color(match)
cv2.rectangle(image, top_left, bottom_right, color, FRAME_THICKNESS)
top_left = (face_location[3], face_location[2])
bottom_right = (face_location[1], face_location[2] + 22)
cv2.rectangle(image, top_left, bottom_right, color, cv2.FILLED)
cv2.putText(image, match, (face_location[3] + 10, face_location[2] + 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (200, 200, 200), FONT_THICKNESS)
cv2.imshow(filename, image)
cv2.waitKey(0)
cv2.destroyWindow(filename)
Example 3: face detection python