function for sorting a dataframe pandas code example

Example 1: df sort values

>>> df.sort_values(by=['col1'], ascending = False)
    col1 col2 col3
0   A    2    0
1   A    1    1
2   B    9    9
5   C    4    3
4   D    7    2
3   NaN  8    4

Example 2: Returns a new DataFrame sorted by the specified column(s)

# Returns a new DataFrame sorted by the specified column(s)

df.sort(df.age.desc()).collect()
# [Row(age=5, name=u'Bob'), Row(age=2, name=u'Alice')]
df.sort("age", ascending=False).collect()
# [Row(age=5, name=u'Bob'), Row(age=2, name=u'Alice')]
df.orderBy(df.age.desc()).collect()
# [Row(age=5, name=u'Bob'), Row(age=2, name=u'Alice')]
from pyspark.sql.functions import *
df.sort(asc("age")).collect()
# [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')]
df.orderBy(desc("age"), "name").collect()
# [Row(age=5, name=u'Bob'), Row(age=2, name=u'Alice')]
df.orderBy(["age", "name"], ascending=[0, 1]).collect()
# [Row(age=5, name=u'Bob'), Row(age=2, name=u'Alice')]