Example 1: matplotlib histogram
import matplotlib.pyplot as plt
data = [1.7,1.8,2.0,2.2,2.2,2.3,2.4,2.5,2.5,2.5,2.6,2.6,2.8,
2.9,3.0,3.1,3.1,3.2,3.3,3.5,3.6,3.7,4.1,4.1,4.2,4.3]
plt.hist(data, range=(1,4), bins=8)
plt.show()
Example 2: matplitlib how to draw a histogram
import matplotlib.pyplot as plt
x = [1,1,2,3,3,5,7,8,9,10,
10,11,11,13,13,15,16,17,18,18,
18,19,20,21,21,23,24,24,25,25,
25,25,26,26,26,27,27,27,27,27,
29,30,30,31,33,34,34,34,35,36,
36,37,37,38,38,39,40,41,41,42,
43,44,45,45,46,47,48,48,49,50,
51,52,53,54,55,55,56,57,58,60,
61,63,64,65,66,68,70,71,72,74,
75,77,81,83,84,87,89,90,90,91
]
plt.hist(x, bins=10)
plt.show()
Example 3: matplotlib histogram python
import pyplot from matplotlib as plt
plt.hist(x_axis_list, y_axis_list)
Example 4: matplotlib histogram
import pyplot from matplotlib as plt
plt.hist(x, bins=None, range=None, density=False, weights=None, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, color=None, label=None, stacked=False, *, data=None, **kwargs)
Example 5: histogram python
>>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3])
(array([0, 2, 1]), array([0, 1, 2, 3]))
>>> np.histogram(np.arange(4), bins=np.arange(5), density=True)
(array([0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4]))
>>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3])
(array([1, 4, 1]), array([0, 1, 2, 3]))