how to calculate mean squared error in python code example
Example 1: how to calculate rmse in linear regression python
actual = [0, 1, 2, 0, 3]
predicted = [0.1, 1.3, 2.1, 0.5, 3.1]
mse = sklearn.metrics.mean_squared_error(actual, predicted)
rmse = math.sqrt(mse)
print(rmse)
Example 2: calculate root mean square error python
def rmse(predictions, targets):
return np.sqrt(((predictions - targets) ** 2).mean())