Example 1: pandas categorical to numeric
dataset["sex"] = dataset["sex"].astype('category').cat.codes
Example 2: using df.astype to select categorical data and numerical data
df = pd.DataFrame({'vertebrates': ['Bird', 'Bird', 'Mammal', 'Fish', 'Amphibian', 'Reptile', 'Mammal']})
df.vertebrates.astype("category").cat.codes
Example 3: panda categorical data into numerica
sex = train_dataset['Sex'].replace(['female','male'],[0,1])
print(sex)
Example 4: pandas categorical to numeric
dataset['Origin'] = dataset['Origin'].map({1: 'USA', 2: 'Europe', 3: 'Japan'})
Example 5: how to convert categorical data to numerical data in python
import pandas as pd
import numpy as np
headers = ["symboling", "normalized_losses", "make", "fuel_type", "aspiration",
"num_doors", "body_style", "drive_wheels", "engine_location",
"wheel_base", "length", "width", "height", "curb_weight",
"engine_type", "num_cylinders", "engine_size", "fuel_system",
"bore", "stroke", "compression_ratio", "horsepower", "peak_rpm",
"city_mpg", "highway_mpg", "price"]
df = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data",
header=None, names=headers, na_values="?" )
df.head()
Example 6: how to convert categorical data to numerical data in r
Type_peau<-as.factor(c("Mixte","Normale","Sèche","Mixte","Normale","Mixte"))
Type_peau
unclass(Type_peau)