how to deploy deep learning model in aws code example

Example: deploying models on sagemaker

# import libraries
import boto3, re, sys, math, json, os, sagemaker, urllib.request
from sagemaker import get_execution_role
import numpy as np                                
import pandas as pd                               
import matplotlib.pyplot as plt                   
from IPython.display import Image                 
from IPython.display import display               
from time import gmtime, strftime                 
from sagemaker.predictor import csv_serializer   

# Define IAM role
role = get_execution_role()
prefix = 'sagemaker/DEMO-xgboost-dm'
containers = {'us-west-2': '433757028032.dkr.ecr.us-west-2.amazonaws.com/xgboost:latest',
              'us-east-1': '811284229777.dkr.ecr.us-east-1.amazonaws.com/xgboost:latest',
              'us-east-2': '825641698319.dkr.ecr.us-east-2.amazonaws.com/xgboost:latest',
              'eu-west-1': '685385470294.dkr.ecr.eu-west-1.amazonaws.com/xgboost:latest'} # each region has its XGBoost container
my_region = boto3.session.Session().region_name # set the region of the instance
print("Success - the MySageMakerInstance is in the " + my_region + " region. You will use the " + containers[my_region] + " container for your SageMaker endpoint.")