how to import linear regression in python code example

Example 1: scikit learn linear regression

from sklearn.linear_model import LinearRegression
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
y = np.dot(X, np.array([1, 2])) + 3
reg = LinearRegression().fit(X, y)
reg.score(X, y)
reg.coef_
reg.intercept_
reg.predict(np.array([[3, 5]]))

Example 2: linear regression in python

from sklearn.linear_model import LinearRegression
lm = LinearRegression()
lm.fit(X, y)

Example 3: python linear regression

>>> from scipy import stats
>>> import numpy as np
>>> x = np.random.random(10)
>>> y = np.random.random(10)
>>> slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)