how to import random forest classifier in python code example
Example 1: sklearn random forest
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(max_depth=2, random_state=0)
clf.fit(X, y)
print(clf.predict([[0, 0, 0, 0]]))
Example 2: Scikit learn random forest classifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
X, y = make_classification(n_samples=1000, n_features=4,
n_informative=2, n_redundant=0,
random_state=0, shuffle=False)
clf = RandomForestClassifier(max_depth=2, random_state=0)
clf.fit(X, y)
print(clf.predict([[0, 0, 0, 0]]))
Example 3: sklearn random forest
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
X, y = make_classification(n_samples=1000, n_features=4,
n_informative=2, n_redundant=0,
random_state=0, shuffle=False)
clf = RandomForestClassifier(max_depth=2, random_state=0)
clf.fit(X, y)
print(clf.predict([[0, 0, 0, 0]]))
Example 4: Random forest classifier python
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
sns.barplot(x=feature_imp, y=feature_imp.index)
plt.xlabel('Feature Importance Score')
plt.ylabel('Features')
plt.title("Visualizing Important Features")
plt.legend()
plt.show()