image classification grey streamlit code example
Example: image classification web app using stramlit
import cv2from PIL import Image, ImageOpsimport numpy as npdef import_and_predict(image_data, model): size = (150,150) image = ImageOps.fit(image_data, size, Image.ANTIALIAS) image = np.asarray(image) img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) img_resize = (cv2.resize(img, dsize=(75, 75), interpolation=cv2.INTER_CUBIC))/255. img_reshape = img_resize[np.newaxis,...] prediction = model.predict(img_reshape) return predictionif file is None: st.text("Please upload an image file")else: image = Image.open(file) st.image(image, use_column_width=True) prediction = import_and_predict(image, model) if np.argmax(prediction) == 0: st.write("It is a paper!") elif np.argmax(prediction) == 1: st.write("It is a rock!") else: st.write("It is a scissor!") st.text("Probability (0: Paper, 1: Rock, 2: Scissor") st.write(prediction)