keras plot model code example
Example 1: plot keras model
tf.keras.utils.plot_model(model, to_file=dot_img_file.png, show_shapes=True)
Example 2: plotting graphs in keras
from keras.models import Sequential
from keras.layers import Dense
import matplotlib.pyplot as plt
import numpy
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
X = dataset[:,0:8]
Y = dataset[:,8]
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
history = model.fit(X, Y, validation_split=0.33, epochs=150, batch_size=10, verbose=0)
print(history.history.keys())
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
Example 3: visualize neural network keras
from keras.models import Sequential
from keras.layers import Dense
from keras.utils.vis_utils import plot_model
model = Sequential()
model.add(Dense(2, input_dim=1, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
plot_model(model, to_file='model_plot.png', show_shapes=True, show_layer_names=True)