kruskal algorithm java code example

Example 1: java djikstra's algorithm

import java.util.*; 
public class DPQ { 
    private int dist[]; 
    private Set<Integer> settled; 
    private PriorityQueue<Node> pq; 
    private int V; // Number of vertices 
    List<List<Node> > adj; 
  
    public DPQ(int V) 
    { 
        this.V = V; 
        dist = new int[V]; 
        settled = new HashSet<Integer>(); 
        pq = new PriorityQueue<Node>(V, new Node()); 
    } 
  
    // Function for Dijkstra's Algorithm 
    public void dijkstra(List<List<Node> > adj, int src) 
    { 
        this.adj = adj; 
  
        for (int i = 0; i < V; i++) 
            dist[i] = Integer.MAX_VALUE; 
  
        // Add source node to the priority queue 
        pq.add(new Node(src, 0)); 
  
        // Distance to the source is 0 
        dist[src] = 0; 
        while (settled.size() != V) { 
  
            // remove the minimum distance node  
            // from the priority queue  
            int u = pq.remove().node; 
  
            // adding the node whose distance is 
            // finalized 
            settled.add(u); 
  
            e_Neighbours(u); 
        } 
    } 
  
    // Function to process all the neighbours  
    // of the passed node 
    private void e_Neighbours(int u) 
    { 
        int edgeDistance = -1; 
        int newDistance = -1; 
  
        // All the neighbors of v 
        for (int i = 0; i < adj.get(u).size(); i++) { 
            Node v = adj.get(u).get(i); 
  
            // If current node hasn't already been processed 
            if (!settled.contains(v.node)) { 
                edgeDistance = v.cost; 
                newDistance = dist[u] + edgeDistance; 
  
                // If new distance is cheaper in cost 
                if (newDistance < dist[v.node]) 
                    dist[v.node] = newDistance; 
  
                // Add the current node to the queue 
                pq.add(new Node(v.node, dist[v.node])); 
            } 
        } 
    } 
  
    // Driver code 
    public static void main(String arg[]) 
    { 
        int V = 5; 
        int source = 0; 
  
        // Adjacency list representation of the  
        // connected edges 
        List<List<Node> > adj = new ArrayList<List<Node> >(); 
  
        // Initialize list for every node 
        for (int i = 0; i < V; i++) { 
            List<Node> item = new ArrayList<Node>(); 
            adj.add(item); 
        } 
  
        // Inputs for the DPQ graph 
        adj.get(0).add(new Node(1, 9)); 
        adj.get(0).add(new Node(2, 6)); 
        adj.get(0).add(new Node(3, 5)); 
        adj.get(0).add(new Node(4, 3)); 
  
        adj.get(2).add(new Node(1, 2)); 
        adj.get(2).add(new Node(3, 4)); 
  
        // Calculate the single source shortest path 
        DPQ dpq = new DPQ(V); 
        dpq.dijkstra(adj, source); 
  
        // Print the shortest path to all the nodes 
        // from the source node 
        System.out.println("The shorted path from node :"); 
        for (int i = 0; i < dpq.dist.length; i++) 
            System.out.println(source + " to " + i + " is "
                               + dpq.dist[i]); 
    } 
} 
  
// Class to represent a node in the graph 
class Node implements Comparator<Node> { 
    public int node; 
    public int cost; 
  
    public Node() 
    { 
    } 
  
    public Node(int node, int cost) 
    { 
        this.node = node; 
        this.cost = cost; 
    } 
  
    @Override
    public int compare(Node node1, Node node2) 
    { 
        if (node1.cost < node2.cost) 
            return -1; 
        if (node1.cost > node2.cost) 
            return 1; 
        return 0; 
    } 
}

Example 2: kruskal's algorithm

#include<bits/stdc++.h>

using namespace std;

int  main()
{
	int n = 9;
	
	int mat[9][9] = {
	{100,4,100,100,100,100,100,8,100},
	{4,100,8,100,100,100,100,100,100},
	{100,8,100,7,100,4,100,100,2},
	{100,100,7,100,9,14,100,100,100},
	{100,100,100,9,100,10,100,100,100},
	{100,100,4,14,10,100,2,100,100},
	{100,100,100,100,100,2,100,1,6},
	{8,100,100,100,100,100,1,100,7},
	{100,100,2,100,100,100,6,7,100}};
	
	int parent[n];
	
	int edges[100][3];
	int count = 0;
	
	for(int i=0;i<n;i++)
		for(int j=i;j<n;j++)
		{
			if(mat[i][j] != 100)
			{
				edges[count][0] = i;
				edges[count][1] = j;
				edges[count++][2] = mat[i][j];	
			}		
		}

	for(int i=0;i<count-1;i++)
		for(int j=0;j<count-i-1;j++)
			if(edges[j][2] > edges[j+1][2])
				{
					int t1=edges[j][0], t2=edges[j][1], t3=edges[j][2];
					
					edges[j][0] = edges[j+1][0];
					edges[j][1] = edges[j+1][1];
					edges[j][2] = edges[j+1][2];
					
					edges[j+1][0] = t1;
					edges[j+1][1] = t2;
					edges[j+1][2] = t3;
				}
				
	int mst[n-1][2];
	int mstVal = 0;
	int l = 0;
	
	cout<<endl;
	
	for(int i=0;i<n;i++)
		parent[i] = -1;
	cout<<endl;
				
	for(int i=0;i<count;i++)
	{
		if((parent[edges[i][0]] == -1 && parent[edges[i][1]] == -1))
		{
			parent[edges[i][0]] = edges[i][0];
			parent[edges[i][1]] = edges[i][0];
			
			mst[l][0] = edges[i][0];
			mst[l++][1] = edges[i][1];
			
			mstVal += edges[i][2];
		}
		
		else if((parent[edges[i][0]] == -1 && parent[edges[i][1]] != -1))
		{
			parent[edges[i][0]] = parent[edges[i][1]];
			
			mst[l][0] = edges[i][1];
			mst[l++][1] = edges[i][0];
			
			mstVal += edges[i][2];
		}
		
		else if((parent[edges[i][0]] != -1 && parent[edges[i][1]] == -1))
		{
			parent[edges[i][1]] = parent[edges[i][0]];
			
			mst[l][0] = edges[i][0];
			mst[l++][1] = edges[i][1];
			
			mstVal += edges[i][2];
		}
		
		else if(parent[edges[i][0]] != -1 && parent[edges[i][1]] != -1 && parent[edges[i][0]] != parent[edges[i][1]])
		{
			int p = parent[edges[i][1]];
			for(int j=0;j<n;j++)
				if(parent[j] == p)
					parent[j] = parent[edges[i][0]];
			
			mst[l][0] = edges[i][0];
			mst[l++][1] = edges[i][1];
			
			mstVal += edges[i][2];
		}
	}
	
	for(int i=0;i<l;i++)
		cout<<mst[i][0]<<" -> "<<mst[i][1]<<endl;
	
	cout<<endl;
	cout<<mstVal<<endl;
		
	return(0);
}