labels for confusion matrix code example
Example 1: how to find the labels of the confusion matrix in python
""" In order to find the labels just use the Counter function to count
the records from y_test and then check row-wise sum of the confusion
matrix. Then apply the labels to the corresponding rows using the
inbuilt seaborn plot as shown below"""
from collections import Counter
Counter(y_test).keys()
Counter(y_test).values()
import seaborn as sns
import matplotlib.pyplot as plt
ax= plt.subplot()
sns.heatmap(cm, annot=True, fmt='g', ax=ax);
ax.set_xlabel('Predicted labels');ax.set_ylabel('True labels');
ax.set_title('Confusion Matrix');
ax.xaxis.set_ticklabels(['business', 'health']); ax.yaxis.set_ticklabels(['health', 'business']);
Example 2: print labels on confusion_matrix
unique_label = np.unique([y_true, y_pred])
cmtx = pd.DataFrame(
confusion_matrix(y_true, y_pred, labels=unique_label),
index=['true:{:}'.format(x) for x in unique_label],
columns=['pred:{:}'.format(x) for x in unique_label]
)
print(cmtx)