loc vs iloc pandas code example
Example 1: loc and iloc in pandas
iloc - default indexes (system generated)
loc - table indexes or we manually given indexes
Example 2: pandas loc iloc
df.iloc[3]
df.iloc[0:3]
df.iloc[:, 0:3]
df.iloc[0:3, 4:6]
df.iloc[[0, 3, 5], [1, 2, 4]]
df.loc[:, 'column_name']
df['column_name']
df.loc[0:5, 'column_name']
df.loc[df['column_name'] < 5]
df.loc[df['column_condition'] < 12, ['column_desired']]
Example 3: loc and iloc in pandas
iloc slicing gives all the data upto the position that is passed as argument
loc gives all the data upto the label that is passed as argument
n = pd.Series([1,2,3,4],index = [0,1,2,3])
print("With iloc we got")
print(n.iloc[:2])
print("With loc we got")
print(n.loc[:2])
<Output>
With iloc we got
0 1
1 2
dtype: int64
With loc we got
0 1
1 2
2 3
dtype: int64
Example 4: how to use loc and iloc in pandas
>>> mydict = [{'a': 1, 'b': 2, 'c': 3, 'd': 4},
... {'a': 100, 'b': 200, 'c': 300, 'd': 400},
... {'a': 1000, 'b': 2000, 'c': 3000, 'd': 4000 }]
>>> df = pd.DataFrame(mydict)
>>> df
a b c d
0 1 2 3 4
1 100 200 300 400
2 1000 2000 3000 4000