logistic regression in ml code example
Example 1: logistic regression sklearn
from sklearn.linear_model import LogisticRegression
LR = LogisticRegression(random_state=0).fit(X, y)
LR.predict(X[:2, :])
LR.score(X, y)
from sklearn.metrics import mean_absolute_error
mean_absolute_error(y_true, y_pred)
from sklearn.metrics import mean_squared_error
mean_squared_error(y_true, p_pred)
from sklearn.metrics import r2_score
r2_score(y_true, y_pred)
Example 2: logistic regression algorithm in python
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression()
logreg.fit(X_train,y_train)
y_pred=logreg.predict(X_test)
Example 3: importing logistic regression
sklearn.linear_model.LogisticRegression
Example 4: logistic regression algorithm in python
from sklearn import metrics
cnf_matrix = metrics.confusion_matrix(y_test, y_pred)
cnf_matrix