matplotlib figure code example

Example 1: matplotlib plot

import matplotlib.pyplot as plt
fig = plt.figure(1)	#identifies the figure 
plt.title("Y vs X", fontsize='16')	#title
plt.plot([1, 2, 3, 4], [6,2,8,4])	#plot the points
plt.xlabel("X",fontsize='13')	#adds a label in the x axis
plt.ylabel("Y",fontsize='13')	#adds a label in the y axis
plt.legend(('YvsX'),loc='best')	#creates a legend to identify the plot
plt.savefig('Y_X.png')	#saves the figure in the present directory
plt.grid()	#shows a grid under the plot
plt.show()

Example 2: figsize matplotlib

# figsize is an optional parameter in matplotlib.pyplot library's .figure() function
# it defaults to = None
# syntax:
# 	figsize=(width, height)
#		- each integer much be a float

import matplotlib.pyplot as plt

figure = plt.figure(figsize = (10,5));

Example 3: matplotlib.pyplot

import numpy as np
import matplotlib.pyplot as plt

x = np.arange(0, 5, 0.1);
y = np.sin(x)
plt.plot(x, y)

Example 4: matplotlib.pyplot

plt.plot([1, 2, 3, 4], [1, 4, 9, 16]) # plot x against y

Example 5: matplotlib plot

>>> rng = np.arange(50)
>>> rnd = np.random.randint(0, 10, size=(3, rng.size))
>>> yrs = 1950 + rng

>>> fig, ax = plt.subplots(figsize=(5, 3))
>>> ax.stackplot(yrs, rng + rnd, labels=['Eastasia', 'Eurasia', 'Oceania'])
>>> ax.set_title('Combined debt growth over time')
>>> ax.legend(loc='upper left')
>>> ax.set_ylabel('Total debt')
>>> ax.set_xlim(xmin=yrs[0], xmax=yrs[-1])
>>> fig.tight_layout()

Example 6: matplotlib python

import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator
import numpy as np

fig, ax = plt.subplots(subplot_kw={"projection": "3d"})

# Make data.
X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)

# Plot the surface.
surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,
                       linewidth=0, antialiased=False)

# Customize the z axis.
ax.set_zlim(-1.01, 1.01)
ax.zaxis.set_major_locator(LinearLocator(10))
# A StrMethodFormatter is used automatically
ax.zaxis.set_major_formatter('{x:.02f}')

# Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)

plt.show()