Example 1: pandas left join
df.merge(df2, left_on = "doc_id", right_on = "doc_num", how = "left")
Example 2: joins in pandas
pd.merge(product,customer,left_on='Product_name',right_on='Purchased_Product')
Example 3: pandas merge python
import pandas as pd
df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'],
'value': [1, 2, 3, 5]})
df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'],
'value': [5, 6, 7, 8]})
df1.merge(df2, left_on='lkey', right_on='rkey')
Example 4: merge dataframe in python
In [1]: df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
...: 'B': ['B0', 'B1', 'B2', 'B3'],
...: 'C': ['C0', 'C1', 'C2', 'C3'],
...: 'D': ['D0', 'D1', 'D2', 'D3']},
...: index=[0, 1, 2, 3])
...:
In [2]: df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
...: 'B': ['B4', 'B5', 'B6', 'B7'],
...: 'C': ['C4', 'C5', 'C6', 'C7'],
...: 'D': ['D4', 'D5', 'D6', 'D7']},
...: index=[4, 5, 6, 7])
...:
In [3]: df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'],
...: 'B': ['B8', 'B9', 'B10', 'B11'],
...: 'C': ['C8', 'C9', 'C10', 'C11'],
...: 'D': ['D8', 'D9', 'D10', 'D11']},
...: index=[8, 9, 10, 11])
...:
In [4]: frames = [df1, df2, df3]
In [5]: result = pd.concat(frames)
Example 5: python merge using or statement
dupes = (df.B_on_A_match_1 == df.B_on_A_match_2)
df.loc[~dupes]
A A_on_B_match_1 A_on_B_match_2 B B_on_A_match_1 B_on_A_match_2
0 1.0 NaN NaN NaN 9.0 4.0
0 NaN 2.0 6.0 8.0 NaN NaN
1 NaN 4.0 4.0 5.0 NaN NaN
Example 6: take union of two dataframes pandas
m = {'left_only': 'df1', 'right_only': 'df2', 'both': 'df1, df2'}
result = df1.merge(df2, on=['A'], how='outer', indicator='B')
result['B'] = result['B'].map(m)
result