Example 1: merge dataframe in python
In [1]: df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
...: 'B': ['B0', 'B1', 'B2', 'B3'],
...: 'C': ['C0', 'C1', 'C2', 'C3'],
...: 'D': ['D0', 'D1', 'D2', 'D3']},
...: index=[0, 1, 2, 3])
...:
In [2]: df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
...: 'B': ['B4', 'B5', 'B6', 'B7'],
...: 'C': ['C4', 'C5', 'C6', 'C7'],
...: 'D': ['D4', 'D5', 'D6', 'D7']},
...: index=[4, 5, 6, 7])
...:
In [3]: df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'],
...: 'B': ['B8', 'B9', 'B10', 'B11'],
...: 'C': ['C8', 'C9', 'C10', 'C11'],
...: 'D': ['D8', 'D9', 'D10', 'D11']},
...: index=[8, 9, 10, 11])
...:
In [4]: frames = [df1, df2, df3]
In [5]: result = pd.concat(frames)
Example 2: merge pandas
create table bricks (
brick_id integer,
colour varchar2(10)
);
create table colours (
colour_name varchar2(10),
minimum_bricks_needed integer
);
insert into colours values ( 'blue', 2 );
insert into colours values ( 'green', 3 );
insert into colours values ( 'red', 2 );
insert into colours values ( 'orange', 1);
insert into colours values ( 'yellow', 1 );
insert into colours values ( 'purple', 1 );
insert into bricks values ( 1, 'blue' );
insert into bricks values ( 2, 'blue' );
insert into bricks values ( 3, 'blue' );
insert into bricks values ( 4, 'green' );
insert into bricks values ( 5, 'green' );
insert into bricks values ( 6, 'red' );
insert into bricks values ( 7, 'red' );
insert into bricks values ( 8, 'red' );
insert into bricks values ( 9, null );
commit;