Example 1: sparse matrix representation python use
import numpy as np
from scipy.sparse import csr_matrix
A = np.array([[1, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, 1],\
[0, 0, 0, 2, 0, 0]])
print("Dense matrix representation: \n", A)
S = csr_matrix(A)
print("Sparse matrix: \n",S)
B = S.todense()
print("Dense matrix: \n", B)
Example 2: csr_matric scipy lib
>>> row = np.array([0, 0, 1, 2, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
Example 3: csr_matric scipy lib
>>> import numpy as np
>>> from scipy.sparse import csr_matrix
>>> csr_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)