pandas convert all columns to float code example
Example 1: convert a pandas column to int
my_series = pd.to_numeric(my_series)
df["a"] = pd.to_numeric(df["a"])
Example 2: set type of column pandas
df.astype(int)
Example 3: convert all columns to float pandas
You have four main options for converting types in pandas:
to_numeric() - provides functionality to safely convert non-numeric types (e.g. strings) to a suitable numeric type. (See also to_datetime() and to_timedelta().)
astype() - convert (almost) any type to (almost) any other type (even if it's not necessarily sensible to do so). Also allows you to convert to categorial types (very useful).
infer_objects() - a utility method to convert object columns holding Python objects to a pandas type if possible.
convert_dtypes() - convert DataFrame columns to the "best possible" dtype that supports pd.NA (pandas' object to indicate a missing value).
Read on for more detailed explanations and usage of each of these methods.