pandas convert all columns to float code example

Example 1: convert a pandas column to int

# convert Series
my_series = pd.to_numeric(my_series)

# convert column "a" of a DataFrame
df["a"] = pd.to_numeric(df["a"])

Example 2: set type of column pandas

df.astype(int)

Example 3: convert all columns to float pandas

You have four main options for converting types in pandas:

to_numeric() - provides functionality to safely convert non-numeric types (e.g. strings) to a suitable numeric type. (See also to_datetime() and to_timedelta().)

astype() - convert (almost) any type to (almost) any other type (even if it's not necessarily sensible to do so). Also allows you to convert to categorial types (very useful).

infer_objects() - a utility method to convert object columns holding Python objects to a pandas type if possible.

convert_dtypes() - convert DataFrame columns to the "best possible" dtype that supports pd.NA (pandas' object to indicate a missing value).

Read on for more detailed explanations and usage of each of these methods.