pandas convert column to float code example
Example 1: convert column to numeric pandas
df = df.apply(pd.to_numeric)
df[["a", "b"]] = df[["a", "b"]].apply(pd.to_numeric)
Example 2: pandas change to numeric
>>> s = pd.Series(["8", 6, "7.5", 3, "0.9"])
>>> s
0 8
1 6
2 7.5
3 3
4 0.9
dtype: object
>>> pd.to_numeric(s)
0 8.0
1 6.0
2 7.5
3 3.0
4 0.9
dtype: float64
Example 3: pandas dataframe convert string to float
df_raw['PricePerSeat_Outdoor'] = pd.to_numeric(df_raw['PricePerSeat_Outdoor'], errors='coerce')
Example 4: convert all columns to float pandas
You have four main options for converting types in pandas:
to_numeric() - provides functionality to safely convert non-numeric types (e.g. strings) to a suitable numeric type. (See also to_datetime() and to_timedelta().)
astype() - convert (almost) any type to (almost) any other type (even if it's not necessarily sensible to do so). Also allows you to convert to categorial types (very useful).
infer_objects() - a utility method to convert object columns holding Python objects to a pandas type if possible.
convert_dtypes() - convert DataFrame columns to the "best possible" dtype that supports pd.NA (pandas' object to indicate a missing value).
Read on for more detailed explanations and usage of each of these methods.