pandas dataframe change column type from object to float code example

Example 1: convert all columns to float pandas

You have four main options for converting types in pandas:

to_numeric() - provides functionality to safely convert non-numeric types (e.g. strings) to a suitable numeric type. (See also to_datetime() and to_timedelta().)

astype() - convert (almost) any type to (almost) any other type (even if it's not necessarily sensible to do so). Also allows you to convert to categorial types (very useful).

infer_objects() - a utility method to convert object columns holding Python objects to a pandas type if possible.

convert_dtypes() - convert DataFrame columns to the "best possible" dtype that supports pd.NA (pandas' object to indicate a missing value).

Read on for more detailed explanations and usage of each of these methods.

Example 2: object to int and float conversion pandas

In [39]:

df['2nd'] = df['2nd'].str.replace(',','').astype(int)
df['CTR'] = df['CTR'].str.replace('%','').astype(np.float64)
df.dtypes
Out[39]:
Date         object
WD            int64
Manpower    float64
2nd           int32
CTR         float64
2ndU        float64
T1            int64
T2            int64
T3            int64
T4           object
dtype: object
In [40]:

df.head()
Out[40]:
        Date  WD  Manpower   2nd   CTR  2ndU   T1    T2   T3     T4
0   2013/4/6   6       NaN  2645  5.27  0.29  407   533  454    368
1   2013/4/7   7       NaN  2118  5.89  0.31  257   659  583    369
2  2013/4/13   6       NaN  2470  5.38  0.29  354   531  473    383
3  2013/4/14   7       NaN  2033  6.77  0.37  396   748  681    458
4  2013/4/20   6       NaN  2690  5.38  0.29  361   528  541    381