Python pandas.DataFrame: Make whole row NaN according to condition
Use boolean indexing
for assign value per condition:
df[df['B'] > 5] = np.nan
print (df)
A B
0 1.0 4.0
1 3.0 5.0
2 NaN NaN
3 NaN NaN
Or DataFrame.mask
which add by default NaN
s by condition:
df = df.mask(df['B'] > 5)
print (df)
A B
0 1.0 4.0
1 3.0 5.0
2 NaN NaN
3 NaN NaN
Thank you Bharath shetty:
df = df.where(~(df['B']>5))
You can also use df.loc[df.B > 5, :] = np.nan
Example
In [14]: df
Out[14]:
A B
0 1 4
1 3 5
2 4 6
3 8 7
In [15]: df.loc[df.B > 5, :] = np.nan
In [16]: df
Out[16]:
A B
0 1.0 4.0
1 3.0 5.0
2 NaN NaN
3 NaN NaN
in human language df.loc[df.B > 5, :] = np.nan
can be translated to:
assign
np.nan
to any column (:
) of the dataframe (df
) where the conditiondf.B > 5
is valid.