pandas drop rows with nan code example

Example 1: drop if nan in column pandas

df = df[df['EPS'].notna()]

Example 2: how to filter out all NaN values in pandas df

#return a subset of the dataframe where the column name value != NaN 
df.loc[df['column name'].isnull() == False]

Example 3: remove rows or columns with NaN value

df.dropna()     #drop all rows that have any NaN values
df.dropna(how='all')

Example 4: dropping nan in pandas dataframe

df.dropna(subset=['name', 'born'])

Example 5: pandas drop row with nan

import pandas as pd

df = pd.DataFrame({'values_1': ['700','ABC','500','XYZ','1200'],
                   'values_2': ['DDD','150','350','400','5000'] 
                   })

df = df.apply (pd.to_numeric, errors='coerce')
df = df.dropna()
df = df.reset_index(drop=True)

print (df)

Example 6: drop columns with nan pandas

>>> df.dropna(axis='columns')
       name
0    Alfred
1    Batman
2  Catwoman