Python Pandas: how to turn a DataFrame with "factors" into a design matrix for linear regression?

There is a new module called patsy that solves this problem. The quickstart linked below solves exactly the problem described above in a couple lines of code.

  • http://patsy.readthedocs.org/en/latest/overview.html

  • http://patsy.readthedocs.org/en/latest/quickstart.html

Here is an example usage:

import pandas
import patsy

dataFrame = pandas.io.parsers.read_csv("salary2.txt") 
#salary2.txt is a re-formatted data set from the textbook
#Introductory Econometrics: A Modern Approach
#by Jeffrey Wooldridge
y,X = patsy.dmatrices("sl ~ 1+sx+rk+yr+dg+yd",dataFrame)
#X.design_info provides the meta data behind the X columns
print X.design_info

generates:

> DesignInfo(['Intercept',
>             'sx[T.male]',
>             'rk[T.associate]',
>             'rk[T.full]',
>             'dg[T.masters]',
>             'yr',
>             'yd'],
>            term_slices=OrderedDict([(Term([]), slice(0, 1, None)), (Term([EvalFactor('sx')]), slice(1, 2, None)),
> (Term([EvalFactor('rk')]), slice(2, 4, None)),
> (Term([EvalFactor('dg')]), slice(4, 5, None)),
> (Term([EvalFactor('yr')]), slice(5, 6, None)),
> (Term([EvalFactor('yd')]), slice(6, 7, None))]),
>            builder=<patsy.build.DesignMatrixBuilder at 0x10f169510>)

import pandas
import numpy as np

num_rows = 7;
df2 = pandas.DataFrame(
                        {
                        'a' : ['one', 'one', 'two', 'three', 'two', 'one', 'six'],
                        'b' : ['x', 'y', 'y', 'x', 'y', 'x', 'x'],
                        'c' : np.random.randn(num_rows)
                        }
                      )

a_attribute_list = ['one', 'two', 'three', 'six']; #Or use list(set(df2['a'].values)), but that doesn't guarantee ordering.
b_attribute_list = ['x','y']

a_membership = [ np.reshape(np.array(df2['a'].values == elem).astype(np.float64),   (num_rows,1)) for elem in a_attribute_list ]
b_membership = [ np.reshape((df2['b'].values == elem).astype(np.float64), (num_rows,1)) for elem in b_attribute_list ]
c_column =  np.reshape(df2['c'].values, (num_rows,1))


design_matrix_a = np.hstack(tuple(a_membership))
design_matrix_b = np.hstack(tuple(b_membership))
design_matrix = np.hstack(( design_matrix_a, design_matrix_b, c_column ))

# Print out the design matrix to see that it's what you want.
for row in design_matrix:
    print row

I get this output:

[ 1.          0.          0.          0.          1.          0.          0.36444463]
[ 1.          0.          0.          0.          0.          1.         -0.63610264]
[ 0.          1.          0.          0.          0.          1.          1.27876991]
[ 0.          0.          1.          0.          1.          0.          0.69048607]
[ 0.          1.          0.          0.          0.          1.          0.34243241]
[ 1.          0.          0.          0.          1.          0.         -1.17370649]
[ 0.          0.          0.          1.          1.          0.         -0.52271636]

So, the first column is an indicator for the DataFrame locations that were 'one', the second column is an indicator for the DataFrame locations that were 'two', and so on. Columns 4 and 5 are indicators of DataFrame locations that were 'x' and 'y', respectively, and the final column is just the random data.


Pandas 0.13.1 from February 3, 2014 has a method:

>>> pd.Series(['one', 'one', 'two', 'three', 'two', 'one', 'six']).str.get_dummies()
   one  six  three  two
0    1    0      0    0
1    1    0      0    0
2    0    0      0    1
3    0    0      1    0
4    0    0      0    1
5    1    0      0    0
6    0    1      0    0