Example 1: make a condition statement on column pandas
df['color'] = ['red' if x == 'Z' else 'green' for x in df['Set']]
Example 2: pandas if else new column
df.loc[df['column name'] condition, 'new column name'] = 'value if condition is met'
df.loc[df['set_of_numbers'] <= 4, 'equal_or_lower_than_4?'] = 'True'
df['new column name'] = df['column name'].apply(lambda x: 'value if condition is met' if x condition else 'value if condition is not met')
df['name_match'] = df['First_name'].apply(lambda x: 'Match' if x == 'Bill' else 'Mismatch')
df.loc[(df['First_name'] == 'Bill') | (df['First_name'] == 'Emma'), 'name_match'] = 'Match'
df.loc[(df['First_name'] != 'Bill') & (df['First_name'] != 'Emma'), 'name_match'] = 'Mismatch'
Example 3: pandas create new column conditional on other columns
conditions = [
(df['Base Column 1'] == 'A') & (df['Base Column 2'] == 'B'),
(df['Base Column 3'] == 'C')]
choices = ['Conditional Value 1', 'Conditional Value 2']
df['New Column'] = np.select(conditions, choices, default='Conditional Value 1')
Example 4: python conditionally create new column in pandas dataframe
df = pd.DataFrame({'Type':list('ABBC'), 'Set':list('ZZXY')})
print(df)
Type Set
0 A Z
1 B Z
2 B X
3 C Y
df['color'] = np.where(df['Set']=='Z', 'green', 'red')
print(df)
Type Set color
0 A Z green
1 B Z green
2 B X red
3 C Y red
df = pd.DataFrame({'Type':list('ABBC'), 'Set':list('ZZXY')})
print(df)
Type Set
0 A Z
1 B Z
2 B X
3 C Y
conditions = [
(df['Set'] == 'Z') & (df['Type'] == 'A'),
(df['Set'] == 'Z') & (df['Type'] == 'B'),
(df['Type'] == 'B')]
choices = ['yellow', 'blue', 'purple']
df['color'] = np.select(conditions, choices, default='black')
print(df)
Set Type color
0 Z A yellow
1 Z B blue
2 X B purple
3 Y C black
Example 5: add a value to an existing field in pandas dataframe after checking conditions
gapminder['gdpPercap_ind'] = gapminder.gdpPercap.apply(lambda x: 1 if x >= 1000 else 0)
gapminder.head()
Example 6: new column in pandas with where logic
virtsizes = {
"type1": { "gb": 1.2, "xxx": 0, "yyy": 30 },
"type2": { "gb": 1.5, "xxx": 2, "yyy": 20 },
"type3": { "gb": 2.3, "xxx": 0.1, "yyy": 10 },
}
d = {k:v['gb'] for k,v in virtsizes.items()}
print (d)
{'type2': 1.5, 'type1': 1.2, 'type3': 2.3}
df = pd.DataFrame({'vol-type':['type1','type2']})
df["real_size"] = df["vol-type"].map(d)
print (df)
vol-type real_size
0 type1 1.2
1 type2 1.5