Example 1: pandas select column by index
column_B = a_dataframe.iloc[:, 1]
print(column_B)
Example 2: select rows from dataframe pandas
from pandas import DataFrame
boxes = {'Color': ['Green','Green','Green','Blue','Blue','Red','Red','Red'],
'Shape': ['Rectangle','Rectangle','Square','Rectangle','Square','Square','Square','Rectangle'],
'Price': [10,15,5,5,10,15,15,5]
}
df = DataFrame(boxes, columns= ['Color','Shape','Price'])
select_color = df.loc[df['Color'] == 'Green']
print (select_color)
Example 3: select columns pandas
df1 = df.iloc[:,0:2]
Example 4: loc and iloc in pandas
iloc - default indexes (system generated)
loc - table indexes or we manually given indexes
Example 5: retrieve row by index pandas
rowData = dfObj.loc[ 'b' , : ]
Example 6: loc and iloc in pandas
iloc slicing gives all the data upto the position that is passed as argument
loc gives all the data upto the label that is passed as argument
n = pd.Series([1,2,3,4],index = [0,1,2,3])
print("With iloc we got")
print(n.iloc[:2])
print("With loc we got")
print(n.loc[:2])
<Output>
With iloc we got
0 1
1 2
dtype: int64
With loc we got
0 1
1 2
2 3
dtype: int64