Example 1: date parser python pandas
mydateparser = lambda x: pd.datetime.strptime(x, "%Y %m %d %H:%M:%S")
df = pd.read_csv("file.csv", sep='\t', names=['date_column', 'other_column'], parse_dates=['date_column'], date_parser=mydateparser)
Example 2: date parser python pandas
import pandas as pd
values = {'dates': ['20190902093000','20190913093000','20190921200000'],
'status': ['Opened','Opened','Closed']
}
df = pd.DataFrame(values, columns = ['dates','status'])
df['dates'] = pd.to_datetime(df['dates'], format='%Y%m%d%H%M%S')
print (df)
print (df.dtypes)
Example 3: date parser python pandas
format='%d%m%Y'
Example 4: date parser python pandas
import pandas as pd
values = {'dates': ['20190902','20190913','20190921'],
'status': ['Opened','Opened','Closed']
}
df = pd.DataFrame(values, columns = ['dates','status'])
df['dates'] = pd.to_datetime(df['dates'], format='%Y%m%d')
print (df)
print (df.dtypes)
Example 5: date parser python pandas
import pandas as pd
values = {'dates': ['02Sep2019','13Sep2019','21Sep2019'],
'status': ['Opened','Opened','Closed']
}
df = pd.DataFrame(values, columns = ['dates','status'])
df['dates'] = pd.to_datetime(df['dates'], format='%d%b%Y')
print (df)
print (df.dtypes)
Example 6: date parser python pandas
import pandas as pd
values = {'dates': ['20190902','20190913','20190921'],
'status': ['Opened','Opened','Closed']
}
df = pd.DataFrame(values, columns = ['dates','status'])
print (df)
print (df.dtypes)