python confusion matrix with labels code example
Example 1: confusion matrix python
By definition, entry i,j in a confusion matrix is the number of
observations actually in group i, but predicted to be in group j.
Scikit-Learn provides a confusion_matrix function:
from sklearn.metrics import confusion_matrix
y_actu = [2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 2]
y_pred = [0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 2]
confusion_matrix(y_actu, y_pred)
Example 2: print labels on confusion_matrix
unique_label = np.unique([y_true, y_pred])
cmtx = pd.DataFrame(
confusion_matrix(y_true, y_pred, labels=unique_label),
index=['true:{:}'.format(x) for x in unique_label],
columns=['pred:{:}'.format(x) for x in unique_label]
)
print(cmtx)
Example 3: confusion matrix with labels sklearn
Predicted 0 1 2 All
True
0 3 0 0 3
1 0 1 2 3
2 2 1 3 6
All 5 2 5 12