python dataframe groupby multiple columns code example
Example 1: dataframe groupby multiple columns
grouped_multiple = df.groupby(['Team', 'Pos']).agg({'Age': ['mean', 'min', 'max']})
grouped_multiple.columns = ['age_mean', 'age_min', 'age_max']
grouped_multiple = grouped_multiple.reset_index()
print(grouped_multiple)
Example 2: pandas sum multiple columns groupby
#UPDATED (June 2020): Introduced in Pandas 0.25.0,
#Pandas has added new groupby behavior “named aggregation” and tuples,
#for naming the output columns when applying multiple aggregation functions
#to specific columns.
df.groupby(
['col1','col2']
).agg(
sum_col3 = ('col3','sum'),
sum_col4 = ('col4','sum'),
).reset_index()