Python: reading 12-bit binary files
One way to speedup the numpy-vectorized methods is to avoid costly memory allocations for temporary data, use cache more efficently and make use of parallelization. This can be quite easily be done using Numba
, Cython
or C
. Please note that the parallelization is not always beneficial. If the array you want to convert is too small, use the single threaded version (parallel=False
)
Numba version of Cyril Gaudefroy answer with temporary memory allocation
import numba as nb
import numpy as np
@nb.njit(nb.uint16[::1](nb.uint8[::1]),fastmath=True,parallel=True)
def nb_read_uint12(data_chunk):
"""data_chunk is a contigous 1D array of uint8 data)
eg.data_chunk = np.frombuffer(data_chunk, dtype=np.uint8)"""
#ensure that the data_chunk has the right length
assert np.mod(data_chunk.shape[0],3)==0
out=np.empty(data_chunk.shape[0]//3*2,dtype=np.uint16)
for i in nb.prange(data_chunk.shape[0]//3):
fst_uint8=np.uint16(data_chunk[i*3])
mid_uint8=np.uint16(data_chunk[i*3+1])
lst_uint8=np.uint16(data_chunk[i*3+2])
out[i*2] = (fst_uint8 << 4) + (mid_uint8 >> 4)
out[i*2+1] = ((mid_uint8 % 16) << 8) + lst_uint8
return out
Numba version of Cyril Gaudefroy answer with memory preallocation
If you apply this function multiple times on data-chunks of simmilar size you can preallocate the output array only once.
@nb.njit(nb.uint16[::1](nb.uint8[::1],nb.uint16[::1]),fastmath=True,parallel=True,cache=True)
def nb_read_uint12_prealloc(data_chunk,out):
"""data_chunk is a contigous 1D array of uint8 data)
eg.data_chunk = np.frombuffer(data_chunk, dtype=np.uint8)"""
#ensure that the data_chunk has the right length
assert np.mod(data_chunk.shape[0],3)==0
assert out.shape[0]==data_chunk.shape[0]//3*2
for i in nb.prange(data_chunk.shape[0]//3):
fst_uint8=np.uint16(data_chunk[i*3])
mid_uint8=np.uint16(data_chunk[i*3+1])
lst_uint8=np.uint16(data_chunk[i*3+2])
out[i*2] = (fst_uint8 << 4) + (mid_uint8 >> 4)
out[i*2+1] = ((mid_uint8 % 16) << 8) + lst_uint8
return out
Numba version of DGrifffith answer with temporary memory allocation
@nb.njit(nb.uint16[::1](nb.uint8[::1]),fastmath=True,parallel=True,cache=True)
def read_uint12_var_2(data_chunk):
"""data_chunk is a contigous 1D array of uint8 data)
eg.data_chunk = np.frombuffer(data_chunk, dtype=np.uint8)"""
#ensure that the data_chunk has the right length
assert np.mod(data_chunk.shape[0],3)==0
out=np.empty(data_chunk.shape[0]//3*2,dtype=np.uint16)
for i in nb.prange(data_chunk.shape[0]//3):
fst_uint8=np.uint16(data_chunk[i*3])
mid_uint8=np.uint16(data_chunk[i*3+1])
lst_uint8=np.uint16(data_chunk[i*3+2])
out[i*2] = (fst_uint8 << 4) + (mid_uint8 >> 4)
out[i*2+1] = (lst_uint8 << 4) + (15 & mid_uint8)
return out
Numba version of DGrifffith answer with memory preallocation
@nb.njit(nb.uint16[::1](nb.uint8[::1],nb.uint16[::1]),fastmath=True,parallel=True,cache=True)
def read_uint12_var_2_prealloc(data_chunk,out):
"""data_chunk is a contigous 1D array of uint8 data)
eg.data_chunk = np.frombuffer(data_chunk, dtype=np.uint8)"""
#ensure that the data_chunk has the right length
assert np.mod(data_chunk.shape[0],3)==0
assert out.shape[0]==data_chunk.shape[0]//3*2
for i in nb.prange(data_chunk.shape[0]//3):
fst_uint8=np.uint16(data_chunk[i*3])
mid_uint8=np.uint16(data_chunk[i*3+1])
lst_uint8=np.uint16(data_chunk[i*3+2])
out[i*2] = (fst_uint8 << 4) + (mid_uint8 >> 4)
out[i*2+1] = (lst_uint8 << 4) + (15 & mid_uint8)
return out
Timings
num_Frames=10
data_chunk=np.random.randint(low=0,high=255,size=np.int(640*256*1.5*num_Frames),dtype=np.uint8)
%timeit read_uint12_gaud(data_chunk)
#11.3 ms ± 53.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
#435 MB/s
%timeit nb_read_uint12(data_chunk)
#939 µs ± 24.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
#5235 MB/s
out=np.empty(data_chunk.shape[0]//3*2,dtype=np.uint16)
%timeit nb_read_uint12_prealloc(data_chunk,out)
#407 µs ± 5.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
#11759 MB/s
%timeit read_uint12_griff(data_chunk)
#10.2 ms ± 55.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
#491 MB/s
%timeit read_uint12_var_2(data_chunk)
#928 µs ± 16.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
#5297 MB/s
%timeit read_uint12_var_2_prealloc(data_chunk,out)
#403 µs ± 13.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
#12227 MB/s
I have a slightly different implementation from the one proposed by @max9111 that doesn't require a call to unpackbits
.
It creates two uint12
values from three consecutive uint8
directly by cutting the middle byte in half and using numpy's binary operations. In the following, data_chunks
is assumed to be a binary string containing the information for an arbitrary number number of 12-bit integers (hence its length must be a multiple of 3).
def read_uint12(data_chunk):
data = np.frombuffer(data_chunk, dtype=np.uint8)
fst_uint8, mid_uint8, lst_uint8 = np.reshape(data, (data.shape[0] // 3, 3)).astype(np.uint16).T
fst_uint12 = (fst_uint8 << 4) + (mid_uint8 >> 4)
snd_uint12 = ((mid_uint8 % 16) << 8) + lst_uint8
return np.reshape(np.concatenate((fst_uint12[:, None], snd_uint12[:, None]), axis=1), 2 * fst_uint12.shape[0])
I benchmarked with the other implementation and this approach proved to be ~4x faster on a ~5 Mb input:read_uint12_unpackbits
65.5 ms ± 1.11 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
read_uint12
14 ms ± 513 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)