revise a Column in a Pandas DataFrame Based on an If-Else code example

Example 1: add a value to an existing field in pandas dataframe after checking conditions

# Create a new column called based on the value of another column
# np.where assigns True if gapminder.lifeExp>=50 
gapminder['lifeExp_ind'] = np.where(gapminder.lifeExp >= 50, True, False)
gapminder.head(n=3)

Example 2: if else python pandas dataframe

# create a list of our conditions
conditions = [
    (df['likes_count'] <= 2),
    (df['likes_count'] > 2) & (df['likes_count'] <= 9),
    (df['likes_count'] > 9) & (df['likes_count'] <= 15),
    (df['likes_count'] > 15)
    ]

# create a list of the values we want to assign for each condition
values = ['tier_4', 'tier_3', 'tier_2', 'tier_1']

# create a new column and use np.select to assign values to it using our lists as arguments
df['tier'] = np.select(conditions, values)

# display updated DataFrame
df.head()